
DOCUMENT RESUME ') -

iED 149 732
A , IR 005 515

.
AUTHOR. Aronson, Jules

...- ,

TITLE Data Compression - -A, Comparison cf Methods. Computer
Science and Technology. ,

.INSTITUTION National bureau of Standards (DCC), Washington, D.C.
Inst. for Computer Sciences and Technology.

'EEPORT NO NBS-SP-500-12,
PUB .DATE Jun 77 . ,

.._)NOTE 37p.; Some pages may_ be marginally legible due to
print quality

AVAILABLE FROM Superintendent of Documents, U.S. Government .Printing.
( Office, Washington, b.c. 2'0402 (C13.10:500-12,. .

..,-$1.50) _ '
-

..

DDRS PRICE -MF-$0.83 HC -$2.06 'Plus Postage.
DESCRIPTORS *Comparative Analysis; Computer Storage. Devices; Cost .

Effectiveneis; Data Bases; *Data Processing; Federal
Government; Guidelines; Informatidn Scientists;,.
*Information Storage; Information Theory;
Standards

-

IDENTIFIERS Cotputer Software; *Data Compression

5,

.ABSTRACT
This report delineates the theory and terminology of

data compressiOn. It surveys four data compreSsion methods--null .

suppression, pattern substitution, statistical encoding, and
telemetry compressOn--and ,relates them to a standard statistical
coding prbblem, i.e., the noiseless coding protlet. The well defined
solution to that problem,can serve as a standard on which to base the
effectivanesS of data'compression methods. The simple measure
desC.ribed for calculating the effectiveness of a data ccmEression
method is based on the characterization of the solUtion-to toe
noiseless cbdinq.problem. Finally, guidelines are stated concerning
the relevanceof data compression to data processing applications.
(Author/D4G)

***********************************************************************
Reproductions supOlied by EDRS.are the best that can be made

5* from he original doculient.
.***********************************************************************



)
pr.

CQMPUTER SCIENCE & TECHNOLOGY:
CT,

Data Compression
c:zo A Comparison of Methods

Jule's Aronson

. 1v

U S OtPARTMENT OF HEALT H,
, EDUCATION t WELFARE

NATIONAL INSTITUTE oe
EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM ,
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPEfE-
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

Institute for Computer Sciences and Technology
National Bureau of Standards
Washthgton, D.C. 20234

's

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary
Dr.,Sidney Harman, Under Secretary
Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL-153UREAU OF STANDARDS, Ernest AMbler; Acting Director

Issued June 1977



Reports on Computes Science and Technology

4-iTts--te

The National Bureau of Standards has 'a special responsibility Within the Federal

Government for computer science and tothnologY activities. The programs p1 the '

NBS Institute for Computer Scierwes and echnology are designed to provide ADP
standarcE. guidelines. and technical advisory services to improve the effectivendesof

computer utilization in the Federal sector, and to perfoym appropriatereseaTcli and

development efforts as foundatifor such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. T.hose`wishing to receive

notices-of publications in this series should complete and return the form at the end

of this publecatiop. .

a
. National Bureau of Standards gt)ecial Publication 500-12

Nat Bur Stand (U S ). Spec'Publ. 500-12.39 pagespune 1977)

CODEN X N BSA V

Aso

Library of Congress Cataloging in Publication Data
.Aronson, Jules. -

Data compression a comparison of methods

(Computer science & technology) (National Bureau of Standards
special publication, 500-12)

Bibliography: p.
Supt. of Does, no.: C13 10:500-12 "

I. Data com ,pre,ssion (Computer science) 2. Coding theory I Title.

II Series 111.Series United States. National Bureau of. tand'ards

Special publication , 500-12.
QC100-U57 no. 500-12 [QA76..9.D33) 602' Is [00 16'425] 77-608132

US. GOVERNMENT PRINTING OFFICE
WASHINGTON 1977

For sale by the Superintendent of Documents, U.S. goveenment Printing Ofilce

Stock No. 003-003-01797-3

3

t

hington.4.0 2(1402 - Price $1 50

h

.



t

r

. TAsIE OF CONTENTS

1. 'Introduc'tion

2. S

. 1
...

.,
elo

of Data Compression Techniques
. .. 3

3
.1 Null Suppression

2.2 Pattern Substitution

2.3 Statistical Encoding'
. .,

2.4 Telemetry Compression

3. Analysis of Data Compresd-Lion

'3.1 Noiseless Cooing Problem

3.1.1 Uniquely Decipherable Codes
3.1..2 optimal Codps

,

3.2 Realization of Optimal Codes.
l

3.3 Synthesis of the Huffman Code

4. CONCLUSIONS k

5. BIBLIOGRAPHY

P

,

16
,

17*

18-

'.

21
"sa*

,. 21.

, ..

It

,
i 4

. ,
-,i1J- .,

4



Acknowledgment s

wish to acknowlea0 t,oe nelp furnishea by beatrice
piarron ana Bennis w. Fife. ,Aith the encourayement and as-
sistance of ootn, out especially AS. Marron, the ideas ana
style of the paper we e aevelopea.

4

C

A



4

--Data-Compression - A Comparison of 'Methods.

Jules P.. Aronson

-1

One important factor in system desigli and inthe design of software is the cost of. storing
data" methods that,Teduce storage Space can, be-sides reducing storage.cost, be a critical factor
in whether or not .a specific. application can be
implemented. This 'Taper surveys data compression
methods and relates them td a standard statistical
coding problem - the noiseless coding problem. The
well defined solution to that problem.,,can serve asa standard on which to base the. effectiveness of.data compression methods. A simple Teasure, basedon the Ncharacterization of the' solution to the

(,noiseless coding proOlem, 4s stated through whichthe effectiveness of,a data compre(ssidh method can
be calculated. Finally; guidelines are stated con-cerning the relevalIce of data compression to data
processing applidations. -

.

Key words: Coding; Coding Theory; ComputerStorage; Data, Compaction; Data Compression; DataElementp; Data Management;' Data Processing;
.11.4grmatiManofement; Information' Theory.'

1 Introduction

The purpoie of this report is toAassist' Federal Agen-°cies in developing data element standards that are both com-patibXe withinthe 'Federal goveinment and _economical.
Specifically, this report nesponds tq the GAO recommenda-
tions that the Department of Commerce "... issue policy,.

__...:delineating accepted theory andNerminology, and provide forpreparation of guidelines, rdethodologY, and crVetria to befollOwed.by agencies in their standards efforts' *. This re-port delineates the theory and terminology of data compres-sion and surveys.classes'of data compression techniques.

* GAO report 13-115369; Emphasis Needed On Government'sEffcmts To 'Standardize Data Elements And Codes ForComputer Systems; May16, t9741 p33.1

-17 .6

4



Data element standards activities in thejpast nave been
. concerned With. Abbreviatidhs. or codes for specific terms,

such as the names .of countrie,p., metro olitan areas, and

states. The purpdse Of such represe tations has been to
reduce tne space necessary to store such terms, while main-

taining the ability to reproduce t e telMs from the

representations. while each repregentaKion in'a given class
is unique, inter class uniqueness is not'necessarily
tained. For example, the standard abbreviation for

CALIFORNIA is CA (1), but the abbreviation for.CANADA- is
also CA (2). The use of standard Codes creates similar

problems. The code for the geographical, area of,Alameda-
County, California is 06001 (3) . -while that for the stan-

dard metropolitan statistical area of Augusta Georgiaiis:
0600 (.4), To distinguish between these two codes, whenever`

they occur in the same file, is complicated and'soiletimeSi.

impossible, since these codes violate a coding -principle'
that one code not be a prefix of another (5). The decoding
of the.above,two codes involves the inefficient' process of

backtracking throUgh the message stream after it has been
received. , .

The reduction in'storage, effTcted by the use of data

'pepresentations, is not as great as the reduction that. can ,
be,accomplished- by the use of uniform and systematic tech-

niques of data compression. This report describes method'
which uniformly compress ehe data, rather than'a select. set.t.

of terms. These, meds may be used to replace standard
representations OT May be'appWed to data in which some

terms are already so represented'. These methods could
reduce the high cost of computer operations by elimiripting

unnecessary incompatibilities in the representation 434, aata
_and by reducing the cost of storing the data.

.

The cost,of storing data is a very' significant part of

the total computer system cast. This cost is composed of the
direct chargeq,for the-storage media, ,such' as 'disk devices,

as well as the costs of transfering the data to and from
local and remote storage devices. The' latter costs are 11-1

turn composed of the costs of the data channers and for re-
motely stored'data, the network, both of which must,lave'

-sufficient -bandwidth to transmit the data . Data compres-
sion results ih cost savings by redUcing the' amount ,pf
storage required to store data files. In addition; data

(1) Nat. Agr. Stand., Fed. Info; Process. Stand. Put4. .

(FIPS PUB) 5-1,
12) FIPS PUB 10-1
(3) FIPS PI)B 6-2, I.

(4) FIPS PUB 8-4'
(5) see a_ection 3.1.1,

-2-
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compression methods may enable more efficient information
retnieval operations as well as moreecohpmical transmission
Of large amounts ,of data over computer detworKs. There areseveral -types' of data compression techniques, which rangefrtim the suppression of null characters to pattern substitu-
tion and statistical coding.

In'this report several types of data compression tech-niques fare discussed along , with descripeions ot some of ,.their implementations. Then, the data ,compresion problem'"is 'analyzed with respect td- a classification of compression
schemes in terms of the functional attributes of domain, .range, and: ,per-ation.- In-addition, concepts from informa-tion theory are introduCed, in part '3, to give the reader 'aperspective from 'which to clarify and measure the perfor-
mance of compression techniques. FroM information theory A.the compression problem may be'seen as an aspect of the More
general noiseless coding' problem. The mathematical-portionsof part .3 flay be sit-ipped mIlthout seriously'affectIng the
meaning of'this report. F4nally, some criteria for the'selection .of techniques are discussed with.regard to rthe.form ana,application of the dlta-structure:

2." Survey of Data Compression Techniques

2.1 Null Suppression
. ,

Null suppression NeChniques,encomst those methods
which suppre'si zeros, blanks, or both. This type of compres-
s-ion could be called the de acto standard, -method' for;compressing data files. It takes advantage of the prervalence of blanks,add'zeros in some, data,files, and is easyand economical to implement.' Null suppression may not, how-
ever, achieve as high 'degree of compression ratio 'as someother techniques. Its obVious application is_to card image
data records which formed the Basic data structure of manyof the eaelier data_ management systems

-One way of implenting'null-suppression isthrougd theuse of ,a bit map, in which a one -indicates a non-null 'data,
item and a 'zero indicates a null item. This method 4s appli-
cable to data files having fined size units, such as wards-or bytes. Figure 1 illustrates the method where 'a bit mapi appended in the frodt of a colleCtion of items. Units.vontaining all nulls are dropped from the collestion and the:pit which corresponds to such units is set to zero.

-3-
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Otiginal Data Compressed Data

Data 1

0

L
01

0

Data-2
0

0

e

0'

_Data"3

Data 4

0

14.

Figure '1 Zero Suppression Using a Bit !lap

10000100000110

Data 1

Data 2

Data 3

Data 4 I

Another way to implement m10.1 suppresgion is the, run.-
length technique shown in firiivie 2. A special character is
inserted to indicate a run of pulls: Following that charac-

.ter is a number to .indixate the length of the run, The
,choice of the special character depen op! the code uted'. to
represent the data. For codet su as ASCII or EBCDIC' a,
good choice is one of the characterg which doeg nbt occur in
the data, 'of which \there are many in these c'des. If the
character set contains no unused,characters, such as -in ,4Ahe
six-bit codes, the technique may still be used by selecting
.an infequently used- character and doUbling it when At.eoe-
ours as part of the data.

-4- 9
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Original Data Item A1000042500000/4600000ST

, ,Compressed Data.:

t ,

Item AlP4X025i5N%5COST
s4

Ficjur4;;,2 Run Length Coding

2.2 Pattern Substitution
.

.

v

G

,

1

The'ruhlength.technique is a primitive form of a class'of techniques known at pattern, substitution, in whichecodes
,are subStituted for specific character patterns. Data filesoften contain repeating 'patterns, such as illustrated infigure 3. These mays include numeric-and alphabetic informa-'tion combined with or in addition to null characters.

Or iginal Data:

AE10004MFQ00000F320006BCX4
AE2IN00DBF00000F30000013CX1
AE30002RBA130000F301214BCX7

Pattern Table: . .

AE = #

He = $-
00000F3 = %

BCX = @
.

Compressed' Data'

tl$4MFQ%$6@4
112$0DBF,%$06@1

' #3$2RBA%01214@7/

r

1

\.

Figure 3 --Pattern Substitution I

s

IP

..

'A pattern table maybe constructed either inadvance.or
during'. the compression of thp data. The table may be
transmitted, with the data or stored as a permailent part of-the compressor and decompressar. Inthe method of De Main,
Kloss, and Marron the pattern is stored witn the data, Whilein the method of Snyderman and Huntt the pattern is stored
in the compFe.5sor and decompressor: As in null suppression,',

4
*See re,ference 23

1

ft
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-the code.for the pattern is represented by Uhus'ed'char.kters
from .the character set:

?The statistical properties of the patterns may be ad-
vantageously used to increase the efficiency of the compres-
sion: In tde method of Snyderman and Hunt, even though tri- 4..1*

al anq error' was used to''selectthe patterns, the resultant
patterr}s were 168 of some Hof the most frequently occurring
pairs 'of characters .in their textual d'at'a files. The fre-
quency of ,pairs of characters is further exploited by Jewell
who Chose 190 of the' most frequently Occurring pairs as cri-
didates,for substitution.

0

The compres'sfon method of Snyde.rman and.Hunt and ..'t.h4

pf .Jeweli involve substituting single kharacter codes lor
specific pairs of characters. They differ pri,mar.ily in the

wa,y- the pairs of characters are selected,,; and secondarily
in the selection of the substitution code.

In_the Method of Snydermah end Hunt two lists of char.-

aceers ar,e. selected based partly on. their frequency of oc=
currsnce in English text. The first list; called the I'mas.7.

ter characters:', is a subset of the second list called the
"combining characters". fn the example-giverOoy the authors
,there are eight master characters ( blank,A,E,I,O,N,T,U) and
21 combining characters (blank,A,B,C,D,E,F,G,H,1,L,M,N70,,P,

The first step of the compaction process involves
translating each charactei to a hexadecimal: code. between 00
and 41:leaving 190 co iguous. codes at the end, 42 through
FF, for the substitut on codes. Next,each translated char-
acter' is tested,,,in turn, to determine if it is a, master
character. If it isnot such, tden it 4.i output as it is;
otherwise, it is used as a possible fjr5tocharaCter. of a

.151v. When a master character has be -6n found, the next -
'character'in he input string is tested to determine if ,it

is a combin ng character. If,.it is, then the code-for the
pair.is calc lated and replaces both of the input charac
ters. If the next character is not a combining character
then the.translated hexadecimal representa,tionsTor both are
each`, Moved to,the output stream.- Figure 4 contains a table
of the compacted code, using this scheme.

4 0

-6-
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Master'

Char actaks

Base
Char Value

58
A 6D
E 82'

I 97

0 AC
N Cl

.T D6'
U EB

a

'

COMPACTED CODE
4

Combining
Characters

, Hex
Char Code

10 00
A 01

'02-

C 03
D 04
E '05
.F 06,
'G 07
H 08
I 09
L ':0A -

M
N OC

013

P OE
R OF
S , 10
T All
U. '12
VL 13

W 14.

/

U

e

NoncOmbining Characters ' Combined Pairs
.1 ; 4, .>

Hex Rex
fp' -Hex

!lei Hex I ,
Char Code?, Char Code Char Code Char elide Char Code

J 15
K 16
Q '17
X 18

'19

2 lA
a '.. .113.

1? ." 1C
c ID
d lE
e 1F
f 20
g" 21'

h 22
i 23.

24

10" 25
1 26
m 27
n 28

o 29
Pt 2A

q 2B
2C

s 2D
t 2E
u 2F

30

w '31

,x 32
y,, 33.

z 34
0 3 5

- 3 6

2 37

3 38
4 \ ':39

5 3A
6 38
7 3C

3D
9 ' 3E

. 3F
40

Y
49 '

4AI 4B
4C'

4D
4E
4F

7 50
51

'# \ 52

.'41 a 58 A$ 6D%
42 0A:°59 AA 6E
43 $B 5A AB 6F
44 0C 513. AO ;70

45 OD 5C .

46 OE 5D AW 81
47 OF 5E E0
48 5F EA 83

I 61 W.-.

E'2 10 97
OM'1'0
ON 64 -.00 AC '

:00 .65-
OP 66 N$ C1
OA 67
OS 68 TO D6
$T 69 ... r..

@ \S3 $U '6A* 00 EP,

C 0V 613

= 55 1 $W 6C VW FF
56 I

< 57 .

<

in the above = bl ink)

Figure 4

.

a
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.Using the technique described,' the Science5 Information
Exchange compacted the text portion of a 200,000 record on-
line file from an average, of -. 851 to 553 chaiacters per,,
record,. a decrease of 35 percent.. , Using an IBM 360440 the
compression takes ms. 'for 1000 characters while expabsion
takes only 65 ms. The extent to which the decrease was due
to null ,suppreSsion can not be determined from the authors'
report. Such a determin#tion would be necessary before an
accurate comparison between methods can be made.

4

The method of Jewelli;takes into account -the full 190

'most frequently occurring Character pairs in his sample,
thus taking advantage of. fthe. availability of the 190 unused
codes- in an 8-bit re,Oesentation. Figure 5, compiled by
Jewell, is. a 2-characterequency distribution of the 25

most frequently ocdurriing pairs in a sample of text. The

190 pairsare' entered irltb 'a table which forms a. , 4,

permanent part of the compactibn proce=ss. Vie first step of A
the process involves shifting the first two characters of
the input stream . into a' register. If this pair occurs in',
the -combination table then a code is substirtuted ,for the
paiK The code is the address of the pair in the, }table. 4,s

Two new character6 are 'then entered and the process ,.resumes
as in thb-'4)eginning. ri the input pair is not in the A:able
then the first character of that pair is translated to a

value greater then heXadecimal BD (which equals 190, the
length of the table) .and sent to the output stream. One new
'character is shifted: in with the remaining 'se- bnd character
and the process resumes..

r

I

0

13
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Rank Combination I..Occurrences
Occurrences
per Thousand

7

I. 1

2

E$
OT'

328

292
. 26.89

23.94
3 TH 249 20.41
4 244 20.00
5 SO 217 -17.79 .

6 RE 200 16.40
7 }N 197 16.15 r.
8 183 15.00
9 171 14.02

10 OI 156 12.79
11 00 153 12.54

f

12

13
NO
ES

152

138
12.46
12.13 .

14 Ok 141 11.56
15 ON 140 11.48
16 TO 137 11.23
17 137 11.23

° SATIN
,

133

133
10.90,

10.90"
20. AT 119 9.76
21 TE 114 9.35-
22 OC 113 9.26
23 .06 113 9.26
24 OR 112 9.18 ,

25 RO, 109
,

Partial results of a 2 -gharacte frequency test'
The text size is 12198 cha ctens

Figure 5$

,r2:3 Statistical Encoding

Statistical encoding is another class of data compres-
iion methods wh4ch may be-used by itself pr combined with a
pattern substitution, tecrrrrique. Statistical encoding tAkes
advantage of the ,frequency distribution of cdaracters sd
that short 're resentations are used for characters that oc-cur freque y, and longer representations are used for

, characterst at occur less frequently. When combined with
, 'pattern substitution, 'short representation may be' used for

4,
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some frequently occurring pairs or other groups of charac-

ters.-' Morse code,'for example, uses short code groups for,
, the common letters, and longer code groups of the others.

When binary ones and zeros are used to represent a mes-
sage in variable length codes, there must be a' way to tell
where one character or pattern ends and the other begins.

This can be done if the code has the prefix property, which
means that no short code group is duplicated as the begin-
ning of,..a.lonir,group,.. Huffman codes haye the prefix qual-
ity and in addition areminimumredundancl codes, that is

they. are optimal in, the sense that. data encoded, in these
codes could not be-expressed in fewer bits.

the combinatorial techniques used to

form Huffman codes., The characters, listed in descendipg

order Of frequency, of occurrence, are assigned a sequence of
bits to form codes as' follows. The two groups with the sma1-,

lest frequencies are selected and a zero bit is agsigned to

one and a one bit is assigned to the other. 'These values
will ultimately be the value of the right most bit, of the

Huffman code. In this case, the right most bit of A is 1,

,while that of B is 0, but: the values of, the bit assignments

could have been interchanged. Next, thetwo groups, A'and
8, -are then

by
as if they ;ere but one group;

represented by B'A, and will be assigned a specific value in

the second bit position- In this way both A and B receive

the same assignment the-second bit position. The above ,

process is now repeated on the list E,T,,4,14A,. where BA

represents groups A and B, and has frequency of 10%. The',

two least frequently occurring groups, represented by 4 and .

BA, are selected, and a zero bit is assigned to character 4,
'and a one bit is assigned to BA. These values will be the

Values of ehe second bit from the right ofthe Huffman code.
. The partial code assembled up to this point is- represented
in the step 2 column of Figure 6. In each of steps 3 and 4

the process is repeated, each time fprming a new list by

'identifying the two elements of,the previods list which had

just been assigned values, and then'assigning zero and a one

bit to the two lease frequently occurring elements of the

new list. 'In this example, messages, written in the Huffman

Codes require only 1.7 bit's per characte on the '?verage,

whereas three bits would be required in the fixed length

representations. The synthesis of Huffman codes will be

-
discussed in greater detail in the next section.

1.5
-i0-



Character Frequency step). step 2 step 3

Huffman
Code

step 4'

E 60 % 0
,T 20 % -0 10
4 10 % 0 10 1 110 :B 6 %, 0 110 I 111,0'A 4% 1 11 111 I 1111.

Figure 6 Formation of Huffman Code

2.4 Telemetry. Compression

I :
Telemetry compression techniques are not applicable tomost data _files. In telemetry, a sensing deyAcOrecords

measurements at regular intervals. 'The measurements .aee`then transmitted to a more central location for further pro-cessing. Compression is applied iprior to transmission toreduce the .total amount of data to be transmitted? Tel#metry'data is generally a sequence of numeric fields. In the se-_ ,quence'there are subsequence _or -runs of numeric fields with`values that vary only slightly from each other. Compressionis achieved by' coding each field,:other than the' first, withthe incremental difference between 'it and' the preceding /field, provided.theabsolute value of he increment', is lessthan4ome pie-determined value., Otherwise, 'the 'field" isrepe0Onted as it is with some escape character to indicatethat- the partictilar
Coded. The conditions thatmake the incremental..Coding technique effective, the ex-istence of long' runs of similarly valued fields, do. riot exitin most data files.

Now

4
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Analysi
,

f Data CompressiOn

..iData compression mayie represented.es, ipplitation
of some function -to el,ements of the dat',base. If we let x
be a specified element 61 the data base, th n the compres-
sionsion of x i ys =f(x),.'

Here, x, the.eiement of the data' base, "may be a string
of one or More bits, bytes, characters, itirs or n-tuples of

1 1characters, words, or text, fragments. a function. that
maps the.

is tat'set.dpon'which the fun ron -element'x'into

some other element *. .The.operates,domaid of
a tunction
While tne range is- that set whose element's are,,the results
ot the function operation. Tne different cotqpression tech-
miqUes may be chaiacterized by the choice at tne domain',;-
range and the'operatidt of the fUnction t.

Usually f is invert4e, which means ta the original
data may be recovered from the:coMpreSsed d ta. Howevex, in
some'applications, a non- invertible choiceof f' may be .ad-s
vantageous. For example,. when the data-base to be compressed
consists. o record identification keys, °pl. ;'a abbreviated
form of each key maybe necessary to retripvek each recad.- ,

In that case a nOn-invertible compression tehniqde that re-
moves §ome of the information from each key ,ou d generate a
morecOmpressed key file than one that was i ve table.

.
_

In the method of Snyderman and Hunt the
the collettion of- pairs of characters.' The
the collection'of bytes, and f was.invetible
tions of the Domain and Rahge for the other m
marized in table I.

in off was
ge of -f was
he defini-
ds ere 'sum -'

'. It appears .that compression techniques-may:, e classi-
fied in terms of the type of domain, range and operation.
Of the methods surveyed, the domain was composed' f' either
fixed length or variable length elements. ,The ran e, except
for those' techniques that generate Huffman codes, was corn-

pbsed of fixed length eleMents. To generate Hutt,an'codes,
the function maps the domain into elements Jtosef'dength-'is
inversely proportional to the frequency of 0 cprfente,of the
-element in the domain. - 4

.

.

/ .

,
In some case's the methods,difter only, in the , tunction

aetinitioh. The difference' between the method of Snyderman
and Hunt ana the one for Huffman code with patterns is that
in the -first case -the function maps characters 1M pairs
into bytes while in the latter case the function maps these
game elements int ariable length fields.

-12-
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Table I

Domain and -Range of a-Sample of Data CoMpresssiommetnods

te:

,1 Snyder

I Domain

& Hunt Iribalirs of characters

, .
Schteher & Thomas' I :4:4 ' % n' .."

. . l', .

Jewell .

. Lynch

.Hahn

Ling & Palermo

Schuegraf& Heaps)

Huffman Code
with'patterns.

TI

,0

Range
- -.-

bytes

to

bytes

" : I fixed length fields d

Three fields
Charactets I two are fixed length,

44 Mother 'is multiple words

fixed length fields

text fragments

pairs of characters

4 .

c

fixed length fields

It It

riable length
bi ary strings

I

.

The perforMance of these methods,fhosen so. wnat arbi-
trarily, to represent a cross tamplf"the oat compression-methods i1 the literature,.differs both in term of percentreduction and computation time. As one may suspect, the more *,complex methods, such as the Huffman code generators,: re-quire more computation".time than the simpler methods like.
that of Snyderman and Hunt': The HUffman code method did ob=tain a greaterpercent reduction than the others, sothe' in-)
creased computation time may be worthwhile for some applica-.tions. On the other hand, the text fragment method of -,Schuegraf and Heaps takes a significantly longer' computaEion
-time 4o accomplish roughly the same-degree of compression asthe simpler digraph methodt. Table 11 contains a summary ofthe published performance of some \data ,compression methods.
Notice that the measure of performance in the table, is thereduction of storage space. Laser. in the papee, that measure
will be shown23tb be unreliable when compared to the measure.of entropy of ,61e data. 4

.

-1318
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1 Table

,Published hesults of Some

II

ompression Technuques

Method .Reductio

Snyderman & Huntf281 35

,JEwutl'51
C

Schiebef & Thomas
n24]

.Lynch
[19

Ling & palermo11.71

Schuegraf & Heaps
[26]

Huffman ode
[io]

1. with Patterns

47

St 1

4345

Data Base
, 4

8MithsoniekScientitic
InformatiOn,Exchange
171,000;000 characters

.12000 char, text

4
36 to 46.

35

62

40,000 biliogeaphic records
averagd of each is 535 cnar
total of 21,400,000 char

Institute of Elect. Eng.

INSPECT system
andOkitish National bib141M

system

specified

I I
Marc, rapes, Issue 1

If

Iheur ce
Compan Files

While the compression methods
;.4a SChuegraf and Heaps paper have-limited'

noted above, their complexity does not a
tivness over the more simpler digraph m
sion of variable lengtn text-fragments in
to, a related question about, the structur

what form should the dictionary take?,..

trieval sytems using tree text data bates
words as keys or index terms about-which t e file is invert-,

ea, and through which access-is provided. \Tnewords of pa-.

escribed An the',

tility,; because; as
crease their ettec-
thods, the discus -
that Paper leads.
of the data "base.
nverted -tile re-
commonly identify.

I
-14-
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tUral language exhibit a.Zipfian *. rank-frequency relation-ship in which' a small number of words account for a large
proportion'of word occurrences, while a large number ofwords occur infrequently. Te inverted. -file system involveslarge and gTowihg dictionaries and thus may entail ineffi-* cient utilization of storage because of distribution charac-teristics.. 'It may be advantageous to consider the formation ,

. of Aceys for file-inversion from units other tnan.woids. Inparticular ityariable -length text fragments are --chgsen, askeis,,,then the above compression method may be a powerful
method of conserving space in inverted -fire systems. 4- re-.lated paper by Clare, Cook, and Lyqch [4] disbusses theSub-ject of variable length text fragmants in greater detail.

. ' 3.1 Noiseless Coding Problem

Most of, the compression methods described' in theliterature are approximations to the solution of the noise-less coding problem, which is described as followd. A random'variable- takes on values x
11

....,x
om

with probabilities

P1' ,pm, respectively. Code, words wl, ;w
m

of

lengths.
1 m 0

respectively, are assigned to the_symbols
' x-1" ...,x

m. The code words are combinations of characters.

taken from a code alphabet al, ,a6, of length D. The

p blem is to construct a uniquely decipherable code which

Mminimizes the average code-word 'length ii- =15
2.

n . Such
,

=codes will be called optimal in this paper. Usually the al-pnabet consists of the symbols and I. The problem may beapproached in three steps. First we establish a lower boundon E; then we find out how close we can come to that 16wer
bound;.then we sffftresize the best dode.,,We shall' indicate .

to ,-,what degree the' various compression methods are attemptsto synthesize the best code.

y he Zipf distribution -ISA hyperbolic distribution dnwhich .'the 'probability ofroccurre9ce of a \ WOrd is
inversely proportional to vile rank of the word. If ,risthe rank of a word, the the probability p i defined,by p(r) =

r' where_k'is constant chosen so hat the

N
eumEp(r4) = 1.

1
J

-15-
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3.1.1 Uniquely Decipherable Clodes, what is a uniquely#deci-
pherable ,code? For example, consider the holloWing bindry

cede i

AA.
x4. 10

A

10

Thy binary sequence 010 could correspo crto anyone of the

three messages x2, xlxi,.,or xix4. ince the sequence010

cannot be decoded accurately, .the fo owing definition is

needed to establish a rule to avoid s ch sequences..

,
A code is uniquely decipherable it every kiniteise7

qUence of code, 'characters corresponds to'at most one les-
sage.

4 P

. -
,

A

.One- way to insure- unique decipherability' is to ,rewire
that no code word be a-prefix of anothei code )cord -. It A, B,

ana C are finite sequences.of code charabeters0.hen the jux-
taposition of A ind-tC, written AC, is the seqddhCe formed.be
writing A f011oviedeby C..,The.seguenceh is a,prqfix-,of the. ,o

sequence B if B May be written.ds C fdr,Adme sequence, C.

.0 ., .
r-- ,

i:

Codes whiCh have the.above.
:

roperty, namely. that no
, , -

1' , code word is'a prefix of'anottter code word, are called in- v

,
''. stantanpous cod0'6,The code below is an example of an in-,

stantaneods code.' -

x
1

0

x2 ill 100

x3

x 11
.,,_.

NO.ticei.hdt:ihe:seguenc ,11111, 10101, or 1001 ,do not

co respond to any me ge; so such sequences should
app and can be disre ded. The commonly used ASCII \and

EBCDI 'code g! are also, instantaneous; but they are stet' t.,..

cause Of their "fixed length; since all fixed, Ierygth 'cod\ s

-. Are" in tantaneous.. Every instantaneous code is uniguely'de-
eipher-ble, but not conversely:, To ,see this,-,'for a given

Vnitelsequence of code charliceers of. an ins*tantarteotis.code,.

-46- 21' :



proceed from le-ft -to' code word W is fOimed'. If1-- ht un-
-such word can,be lormed, thep the unique decipherability

o condition is vacuously satisfied. Since W is'not the prefixof any ,code word, w must be the,` first symbol of the `message:'
Continuing until altothee code4iord is .formed,' and so- __Lon,this process may be repeated until the end of the messaglr:

4
'4o

);he term instantaneous r:eters to the t'act that the codemay be deciphered step by step. If, when proceedihg.,lett.to
right, w is the first word,formed,we know imm4iately, thatw is the first-word of the message. Ih a udiguely'decipriv-
able code which is not instantaheoud,' the 'decod241g protlessmay have to,.tontinue for-a long time before the'iderltityvibt
the first word is Known. ForexamNle,'af in the codettA. .

x
1 . 0 .. ,

.. ,

x 060000001 ' '

(n characterS)-. °

we' received the sequence of n+1 characters 00c....001 wewouldhave to wait until the en4-of the sequence to find outthat the first ,symbol is xl. Fortunately; the sorUtion' to
,the noiseless coding problem can be realiie with an instan--

t.aneous code. Notice that while the ASCII andEBCDIC bodes'
. are instantaneous, ,they are usually' far from optimal.

.
.

ts& ,

3.1.2 Optimal Codes. The degree of, the- optiMality of the-code is measured by' the entropy of the meSsag of text. The
enttropy H(X) is defined aS

H(X) =
1,

where p ,p
m are the probabilities _efILthe, message11. '

symbols -as defined in the above descrip/tion of the noiselesscoding problem._ _ _

The following' theorem gives the
average lerr n at the cone.

'm _ ,(Neisel s'Codin9 Theorem) 11). It, = !.p n is the

p

average cod word length of a uniquely cleciphe,F.able cqde° forthe random Tiabje X4 therl:rE > H(X)/log D, with'equalitp if
,v-- n, ,

;--and 'only if pi=D t. tiote1 that H-(X)/14: D.is the .

uncertainty of X using .logarithmsV the,,base D, that

=17.-2'2



1 H(X) _

D
2

.1.°19215i

og2D

For the environment we are interested in, the coding
°alphabet is binary, sob = 2.,NeXhus,the lower bound is simply

> ti(X) . 4-1(X) is not only the lower bound to the length of

tne code needed to represent the data, it also provides a

measure of the impro'vement that may De expected by compress-
sing the data. The comparison of' the value ot h(X) to tne

current average code size, which is 8 for ASCII or 66CD1C,

gives a measure of the improvement tnat can be realized by

4 compressing the, data. If H(X)=8 then no compression is real-
izable by coding'the,data differently;-if H(X)=5 then up to
,an 8 to 5 compression ratio may be obtained. The comparison
of the improement realized by a specific data compression
techr4gue to the theoretic improvement given by the above
ratio4,!'can serve ,to evaluate the effectivness of the tech-
nique. The measure of effectivness usually given, the file
length, before and after compression, does not inicate the
true level of compression, since the compression may have

been, due mainly to null sul)pression.
:

Any code that achieves the lower bound of the noiseless
Coding theorem is called abtolutely optimal. The following

,-

code

*

is an example of an absolutely.optimal

X': Probabilities . Code Words,
X
1

1/2 0

X
2

1/4 10
X3 1/b .11b

/X4
1/8 111

h(X) =,T = gi
//

- 7 NrA3-

3.2 Realization of Optimal Codes

code.

In. a prevdous example ot-a HuffMan code, fi.'ure 6, tne

average code. length of the mUftman code was 1.7 bits per
character, while the value of the. ntrtc a(X) was 1.156

bits per character'. That example il .Arates the general
impossibility of contructing antabsorutly optimal code for

arbitrary collections Of characters. That example also Ill.(
lustrates that any coding method will be\bound by the value

of H(X). _.--
... , .

..

While the theorem states the existence of an absolutely
_optimal code, in general the cOnstnuction,of one for an ar-
bitrary set of probabilities is impossible. For a given set



z

' F

.

of probabilities pi, ,pm, if the code is to be

absolutely optimal, the lerigths of the code words,must be
.5. -n `

i -- AOchosen to satisfy p
i

= D which Fs the same,as -,,,.
- ..

1
{-log pi)

n
. log D ,

r
i'..

Obviously each ni may not be an integer and yet satisfy the9bpve condition. However we may 'do the next best thing' bychoosing the integer ni to Satisfy the inequalities:c, -
-log pi -logpi
logD ni logD 1

An instantaneous code, can be shown- to exist in which thecode lengths satii-o.f_the above inegurity. .The foilowing
tneoreni characterizes such Coded.

Given -'a random variable X with unce6tainty H(X), 'thereexists, a base D instantaneous code for X whose average
code-woid -length n satisfies

H(X)
logD - ogD

For a proof see Ash, page 39.

Thid thedreM says that the average code-word lerigtn may. be -made sufficiently small to be withlh one digit Qf thelower bound set by-the noiseless coding theorem. That lower'bbund may be approached arbitrarily close if block coding isused. The success of the dig.ram coding schemes is-due to hefadt 'that- block .coding of length 2 is uses, Block codingworks as follows,.
wInstead of assigning a code word to eachsymbol x.2,, we assign a code word to each groupof s symbols.

In other words, we construct a code for the random vectorY = (X1,X2, ,X ), where the )Xi are independent and each

XillastilesariledistritaltiOnasX.IfeactlX.1 assumes M

values then assumes ms 1.7alues. The following example

illud'trates the decrease in the, average code-word length byblock coding.

-19-24



X p Code Word Y = 1X1,X2) p Code Word

a -

x 3/4 x
1
x.i 9/16 0

x
1

1/4 , x x 3/16 10
2

x.

1,2
x
2
x

x
1

3/16 . 110

Ns 2
1/16 : 111 1

E
9/16 1-'3/ (2) + 1/4,13)

I
= 27/16 code cnaracters/2:valoes
of X

= 27/32 code characters/value
of X

. By the above theorem, the average code-word /length ii,
Q..

for the block of length s satisfies

H(f) B(Y)
IT)(15 < + 1 code characters/valde of Y.

H(Y)o= < H(x1)+ +B(X
s
y Whethei- or,not the

Xi are independent from each other. If they are independent,

equality. If tie' Xi
.

identieally distributed, then H(X1)+.1..:+titlsj =
-

the classical case, both,independence andidentical distri-
bution are assum4d, in which case,-the,average code word
length satisfies

sH(X)
"

sh(X)
1-pg D s .log D

or
`

.

Mi(X)
ns.;

H(X-) 1

log.D s log J +

o
While for text tiles and messages,, the independence of :each

X is a tenuous assumption, the astumption that. each 3..s

,identically distributed is c.redible. Upon dropping the
, dependence.aSsumption.thelAbove_inequality'becomes

XS. HX) 4. 1
)

s(log D), .7 s ,ro(g D s-

'.Thus we see that regardless of the independence of(the ele-

ments of the blotk, 'the4 upper boundiofx the, aver.age'code
4

/4-20-25
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11,

length kriay, oe madNe as close.: to H(X)
- as 'cleslied byD

.

iricreading. the block length. On'the (3,ter,ffand, the rower
'limit may be smaller when the elemepts of the block` are not
independerit as is the case frequently text files. Ihus
for the conditions applicable to text files and messages the
average -code-Word. length may be made at least.as small asthe optimal length characterized 'by- the noiseless coding
theOTem.e The dependence ol characters in text files may ex-
plain why the simple A'igfaph methods aresg successful'. That .dependence further .expldited in 'the aethb*d-of Wagner
which. substitutes code's for entire English phrases.

'S
Synthe is of the tiqfman-tode ,

..,
/44-- .'

.

.

.
So. far` only.Ahe-existence of optimal codes has been ."dischssed; now'..the synthesis of brie such code, the Huffman

code, will be 1114strated. For the synthesis, of optimal -'. .'codes, only' the insiananeous -codes need to be'considered
since if arcode it optimal with respect to 'the class 'of ilh-,
stantandoLis -coded, then 3. tj is ,also optimal with respect ..to.

all uniquely idecipher able ,9odes. Thit .characteristrb is-indeed fortunate since instantaneous' codes are tne codes of
'.,' choice for data tr'ansmissAbri: and processing applacations. .

% The prgcise';etatem'en,t of thit'eharactifistic,is as 'follows.

It a code C is optimal,witnih,the class of instantane-.4,0Ods,cooes.for the given peobabilit-ies pi,p2,,t ,pm , whacn
4

-

'means that no other instantaneous 'Code fbr the. same given.set of probabilities has a'Apalrer average code -word length
than C, then ,C is optimal viihinthe.entare class of'unique-

.. ly' decipherable codes,..

For-a pyoof see_ Ash page 40..
,.

-
.

. . ,

An optimal binary code can be characterized by certainnecessary conditions hich restrict the choides of 'code ".

lehgths that may be assigned to each Code%.-These .characteri-'
zations are a4.fAllows.' .

,4**

,.
. ,G-iven a binary code C with word lengtfis .ril,n ... n, .,

2' ' iv, ,
:--,'"

associated with 'a set -of symbols .W1411 -probabilities
P-41,P,.....,pm, assume, for c6nveniencei that the Symbols are

i<

prranged in oider , ot tdecreasihg pr'obabilit'y
Cipa > p2 >.....> pm) ancrthat a group,of symbols with the

.
.

. .

same probability is arranged in order ,of increasing code-.
- ,

', J .

-21- -
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word length. (If <*i f pi+r, then
ni < ni.44/<...< ni+1.) Then if C is -optimal witfiin t e class,-

. ,

'of instantaneous codes, C must haVe the following proper-
. ties:

a. .higher probability symbols' have snorter code words,
that is, p, > p

k
implies n < n

A k

' b. The two least probable' symbols nave code words bt
equal length, that is, =

c. Among the code words of length nm there must be at
least two words that agree in all digiti except the last.
kor example, the following code cannot be optimal since code

-x
'0--

x
1

100
x
3

2
101

x 1101
x
4

5

.

1110
words eand 5do not agree in the first three places.

Fora proof see Ash page' 41.

The constr9ction of a Huffman code for the characters
ci,....,cn wi probabilities ,p1,....,p

n
respectively,

involves generating a bil.mry tree [1j- for which each of the
above characters is represented as a terminal node and the
other nodes, the internal nodes, are formed in the following-
manner. First from the two nodes with smallest'probabili-
ties, say cl and c2, a new.node c With probability p,+p,

1,2

'is formed to be the father of c
1

and c Now with tne-

reduced set of n-,1 nodes, which consists of

ditty Orobabil4.ties respectively, repeat the

above procedure; and continue to repeat it until reduced set
,consiStS of only twb nodes?:Now consider the binary tree
which consists of the terminal node and all the new nodes
formed by the above process. For eacn successive, pairs of

[1] A binary tree i8 a graph which consists of a root
'node' and descendent .nodes. From the root node are ,
links to at most two ot#er nodes, the descendantE of
the root node, Each of'these descendants, in turn,,ar
14nked to no more than/ two other nodes; and these
latter hocless may be-'Similarly linked to other nodes,
arid so on.

:22-
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branches, starting at the root, assign the values 0 and 1 toeach link of the branch. The resultant code for each of thecharacters is the sequence of assigned values -obtained byttacing the tree, from ,the root to each of -the terminalnodes. Each aggregate causes the items so choseri to have acode length of one more binary digit; so the averege lengthis minimized by givin9.this extra digit to the le4t prob-able clump. The following example, illustrates the method.

Let the characterg be c;c2,c3,c4,c5 and have

probabilities .3, .2, .2, .15, .05, respectively. In thetree which results from the above method, the terminal nodesare repre anted by squares, the other nodes by circles; andin each sq re and circle is the probability of the node.

C1
2 ,C

4

The Hliffman.code'for each of the characters is:

Character Code
00

c
2

1.
01

c
3 10 ,

- 110
c
4

5 111.

C5

A variation of the Huffman code, a var-16-le length al-phabetic code, is explained in a paper by Hu and Tucker.There, a tree',, which is optimal in another sense, is 'ob-tained which presefves. the original order of the terminal'nodes. Using their algorithm, alphabetical codes may be gen.-erated which, though- not as 6ptimal as a Huffman 'code, en-ables ordering operations to be applied to the coded text inthe same way as the uncodedtext..

28



Observe that for the'fpxmation of the Huffman-code the
distribution of the charhcters,or blocks must be known in
advance. It bay appear that the huffman code is .valid only .

for each instance or version of the data so' at a new code
May have to be generated for each data ba and for each
change to the database. Fortunately, e distribution of
characters ds,not that sensitive_to c.-nges in.the data. One
study has shown that the distrib ion of characters for
particular data base is stable over a period of time. [18J

Moreover the same distribution s to be ,relatively stable
across differ,nt English text data bases. Tpe following
graph shows the distribution of characters in a typical En-
glish text.

131

34

INDIVIDUAL LETTERS

ET OANI RS HDLCFU MPY WGB VKX-..1Q
2

DIGRAPHS
19 19 1S 17

14 14 14 43 1
12 12

TH HE AN ER ON RE IN ED ND AT OF OR BA
15

TRIGRAPHS

Ilia Mal=I NM M.) MB MI.1111E Eft ..morA
THE AND THA' HAT EDT LENT FOR ION TIO NDE HA'S MEN

Normal frmiency,distribution of the letters of the alphabet
(in uses per thousand)

The'following table, from the paper by Lynch, Petrie4
and Snell [18J, shows a distiibution of character's which is
close to that in the graph. .

A ""

For a'given Huffman code, changes in, the average' code
word-lengthwit-h-r-e-si)ee-t -to---ehanges-in-the-distribu.-ion of
the characterstmay be analyzed in the following way..Let tne
code word lengths be nl,n2, ,nm, where ni<n2K <nm,

Itc
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TABLE 1. NORMALIZED I 12LQUENC LES WI ni MI ANS AM) hiANDArID DEVIATIONS FOR THE FIRST 29 CHARACTERS (ARRANGED IN RANKED ORDER).

TIIT I !LIS ANAL\ SED RANI,L FROM INSPEC 31002 (1969) To INSPEC 31060 (1972) ,

31002 31003 31015 725 31016 =1 710 3101,7, 31056 31057 31060 S.D. Mean

V 01511
E 0.0889

0.1505
0.0900

0.1488 0.1508
0 0885 0.0890

0.1332
0.0890

0.1499
;0.0903

0.1504
0 0900

0.1485
0.0902

01498
0.09'06

0.1502
0.0883

00054.
00039

.0 1483
0.0875

T 0.0730 0.0727 0 0729 04)724 0.0725 -0.0724 0.0722 0.072'1 0.0719 0.077,8 0.000360 0.0725

1 0.0725 0.0736 0 0755 0 0727 Q-0741 .,0 0739 0 0738 .0.07.t5 0.0736 0.0731 4 0.000856 0.0931

0 0.0722 0 0701 0.0705 0 0712 0 0105 .0.0699 0.0695 0.0701 0'0693 0.0715 0.000913 0.0705

N 0.0677 0 0671 0 0677 0.0630 0.0672 0.0672 0.0678 0.0662 0.0669 . 0.0674 0.000527 0.0673

A 0.0641 0 0647 0 0659 4 0.0658 0 0645 0 0651 0.0644 0.0661 0 0658 "% 0.0654 0.000712 0.0651

. R 0 0568 0.0569 , 0 0565 0 0558 0.0572 0 0576' 0.0571 0 0592 0.0573 0.0563 0.000949 0.0570

S 0.0530 0 0529 0.0542 0.0522 0.0537 -0 0533 0 053. . 0 oi4 0 0537 0.0530 0.000608 \ 0.0534

C 0 0398 0 0397 0.0401 0.0192 0 0402 .0 0397 0.0403 0'04007 - 0 0394 0.0388 0.000545 .0.0398

L 0.0370 0.0370 0 0379 0.0374 0.0318 "0 0375 0 0370 0 1'69 0.0370 0.0375 0.000368 .0.0373

M 0.0267 0.0259 0.0271 0-0267 0.0267 0267 0.0247 0 278 0.0257 0.0271 0.000870 0.0265

F 0.0259 0 0260 0 02'61 0.0258 0 0259 *0,0251 0 0262 '0. 245 0062 0.0257 0.000540- 0.0257

D 0.0248 0.0256 0 0256 0.01.58 () 0261 .0.0252 0 0259 0. 258 0.0258 0.0254 0.006380 0.02564'

U A0.0238 0 0238 0.0218 0.0233 0 0240 A 0.0231 0 0234 . 0 0232 0.0240 0.0237 0.000331 0.0236

H v0 0222 0 0226 0.0208 0.0218 o 0216 .0 0220 0.0222 0.02}4 , 0.0224 0.0217 0.000529 0.0219

P 0.0220 0.0210 0.0217 0.0218 b 0215 -0 0223 0.0213 0.0227 0.0215 '0.0224 0.00053r . 0.0218

G 0 0156 0 0156 0.0159 0.0146 0.0160 - 0.0102 0 0151 0.0165 0.0155 0.0153 0.000554 0.0156

Y 0 01 n P0129 ,0.0125 0.0124 0.0122 40122 0.0123 0.0119 0.0125' , 0.0127 0.000310 0.0123

B 0 0086 0 0089 0 0087 , 0.0092 0.0086 DOSS 0.0089 0.0084 0.0090 0 000257' -. 0.0089

V 0.0071 0.0072 0.0071 0.0071 0 0076 0.0076 0.0073 0.0078 0.0074 0.00691' 0.000285' 0.0073

0.0061 0.0061 0'0063 0 0064. 0.0063 0.0061 0.0062 0.0061 0 0064 0:0060 0.000137 0.0063

W 0 0052 0 0055 0 0056 0.0018 0 0057 0.0056 0.0053 0.00!-; 0.0056 0.0050 0000303 0.0054

X 0 0026 0.0030 0.0026 0.0031 0 0025 '0 0027 0.002- 0.0e25 0 0027 0.0028.0.0023 0.000199 0:0027

K 0.0022
0.0020

0 0022,
0 0021

0.0024 0.0022-
`13 0021 0 0020

0.0022
0 0022

0 0021
'0.0020

.0.002' ,

0.0023
0.0023
0.0019

0.0023
0.0019 0.0017

0.000067
0.000169 1

0.0022
0.0020

0.0019 0.0016 0.0015 0.0019 0 0015 0 0017 0.0017 0.0013 0;0013 '0.0020 0.000246 '0.00.16

Q 0.0018 0.0019 01)018 t.. 0 0017 0.0019 .0.0020 0.0018 0.0019 0.0018 0.0017 0-000095 0.0018

, ¢ 0 0016 0.0015 0.001 . 0.0016 0.0015 '0 0015 0.0014 0.0015 0.0016 00017 0.000084 0.0015

L
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.and the probabilities of the characters -are, pl,p2,4.,pii.

,
Suppose that the i'th probability changes tiT tne amount d

1'.
-t,

so that pi = is the new. '1"th probability. Tne ,netv

average code,wora length is

m_ ° m m
440$

=1/4VP +d " r-7+aini*1 1
1

e

m m .m-1. :
Letl

2.:.. i
ithensincect1 .=0, D = 2- d1 :.(n

1 m
-n'

)

. There
. . ,

are two interesting- cases' to consider. Thefirst occurs when
d

i->- 0 for i=1,2,....)m-1. Then, since n -n < 0, . D<'b so
1 m-,

, 7
ii' < 71-.' The second case, _odours when d.

1
< 0, for

i=1,2,....,m1. Then T1' >.-6. If the
i

changes d are
.

restricted so that-

then

a
i

Id%1
1 - n -n.

m I

m-1
all -am-1)D F ) (n

m
- ) 1-a

, 1 1

1
*4

1 m-1 .

It a < ,,- then D < 1-(-) < 1. It appears t.nat as long as..
z

2
.

,. .

the distribution of characters cnanges only sligntly, from
data base to. data base, a Huffman code designed for one .ok
the data bases will be- adequate for tne-otners. Further
study of the variation of Huffman code's with respect to
changes in the data base is needed before more'detailki -,

'statements can pe'made about the performance 01. hutfman
codet when sucn-changes2occur,



'CONCLUSIOLS-

.

Several types of compression methods have been dis-
cussed a1onT.with the underlying coding theory and the mess-, urds for evaluating the effectiveness of a compressionmethod. It was shown that the data-compression problem is
the same as the optimal coding'problem when the data file id
considered -as a collection of independent characters. Sincedata characters are 'generally not independent,, the optimalcode *Ay be even shorter than that predicted, by the noise-
less Coding theorem, thus possibly permitting even greater
compression.' A good measure of 'the eflectivenessof themethod is not the percent reduaton, used in some of thereferenced papers, bu't the, ratio of the entropy H(x) of the
data file to the average encoded6hafacter.size in bits. If/.the compression is at least as good as the'dptimal code thenthe ratio,ie greater than or equal to .1, otherwise it isless thah one.

Tne.sEeps to be followed in seleetihg Or determining aneed for a data comprePsion'metnoa involve the calculation
of ,thbsentropy ót ttpe-data. These. steps are:

1. measiirt ti(x), where,
N

d(Xl=:F-pilOg2(p1):
1="1

In-The above f6rmula for.O(X), pfql/F, where, ti is .the

frequency of the l'th-type of element of the data file, and

ti

, \
',,,, N

.F is' the toill number of elements in the life (F=,..- f ), and
1=1

i

N' is the number;. -of distinct types of elements. As in sec-.
..

..

tion 3.1, the data- file iscomposed of a sequence ,--of ele-ments which* are usually .chAracters. n.ASCII data files,thert are 128'different types of characters that may occur .in thelptile; however since control characters usually do
not occmx. in a file, Most ASCII files will have. only 96 pos-sibre.tPes bf characters; Alternatively H can be-calculat-
ed from the equivalent expression

N , r

.

. %

ki (X) = (1/F) Z

1
z

.log, (t /I i
- log2(F) 4 , .

1=
4

by, summing the values t*log2(f)for each character, dividing

Iw

L27-
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9,

by F and then subtracting-1092(F). For large data files, it

is
.,

not necessary to,base the calculations On the entire
file., but only on part of thesfile; say the first .100,000
bytes if the file is homogeneous,\vr one can use some random-

.,

sampling procedure to estimate th frequencies fl.

2. Determine.the current average character length -a in
bits., For ASCII and EBCDIC tiles-this value will usually be

6. It H(X) is much less than E then a statistical compres-

sion method will be effective. If, on the other hand, R(X)
is close to R then such methods will not be effective;' now-
ever some type of pattern.substitutiohmay be applicable.
For example, it R(X)=7 and the current,code-word lengtn is 8

tnen some improvement would be expected by,compressing the
ddta,,but, on the Otner nand a greater improvement is to be

expected when H(X)=5 and the current -lengtn is 8.

,

,. It the data is numerical', then a numerical method
such Nas polynomial predict9rs and polynomial curve fitting
algorithms [5-9] may loe super for to the methods discussed.in
this repOrt.

'

,c.,

4. If the data is text or a combination of text and

numerical tables; and the data is' compressible as indicdted
in step 2'then either a digraph method or a Huffman method
would compress the dtta. The digraph iethod is much easier"'
to. implement, and runs faster than the Huffman method,'while
the -latter obtains a higher -degree of compression. The
choice of the compression method will depend bn the dbarac.-

teristics, and applications of the data. Bata files which
aontai,n mostly nufferic 'fields would-be compressible by an

entirely different algorithm than would text files. Fre-

queritly accessed files may .need aniargorithm which runs'

quicker than that for less frequently accessed files, even
though the data compression obtained by the faster algorithm
is tar less then.optimal. Witin the same tile system parts
of, the file may be more fciently compressed witn.dif,pAm( :-

terent methods. The clic ionary* of an information management
system maybe compressed with a simple yet 'fast algorithm,

_while the' corresponding data files, because tney ate intre-. .

quently accessed, may be compressed with a more complex al-

* The dictiondry-as used heie, refers to'the collectio n

(it pointers of an inverted file system. Zach..pointer,
by pointing to a record of the file, functions in a

manner an logous to a word (4 an English language
diction 7,

33



gorithm which is slower but realizes more dompression. A4variable length_alphabetic code**, which has some of the op-timal*prOperties of , the- Huffman Code; may be used 'to''compress the dictionary.

5. The effectiveness of a particular data Compressionmethod can be measured by compariqg the,average characterlength of the data file.after it has been compressed to thevalue of the entropy of the file.' If the average character.length, after .compression, is close to the value of the ,en----tropy then the method it as effective as an optima' ttatiit-
'ical compression method. If the value of the average is'still t significantly greater than the value 'of the entropy,

.then the-data compression method is not as effective as.pos-sible.

Data omprgssion is relevant to a data processing ap -'plIcation, when its use is significant Cr meaningful to .theuser. Its use'is warranted when it effects at least one ofthe following:
1. SAghifica

' 2. SignifiCan
st reductiOn
orage reduction

3. Allowing the mplementation of the applicationwhich otherwiSe could not have been implemented
. due to tnsufticient storage
-4. A significant aecrease in the, data, transfer
time.

The'notion of what is signIticant,to a user is,,relativg tothe users environments To a mini-computer user- with limiteddisc storage, a reduction of a few thousand, bytes of storagemay- 'be sigpiticant,, while to a 4Frge system user such a*reduction would be .insignificant. wdale the ultimate *aeci-. fIsion Of whether or not data compression is relevant depends'on the users special requirements and yudgement, the follow-ing three guidelines will be applicable in most cases.
1. If the quantity of data is small, say under100,006 bytes; or if. the life of the data is
short, then data compression would not_ be_ advis-
able.
2. Large data files, .over 100,000' bytes/ th lifeof which, .is not short, are gobo candidaNs fordata compression.
3. A group of data files, where the files have
similar character composition, is a good candidatefor ''data compression when the size of the grotip is
more than 100,000 bytes.

44

** see section 3.3
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